アンカー自由長部周面摩擦が締付け力に及ぼす影響

Effect of surface friction around the free anchor length on clamping force

片山直樹^{a)b)*}

Naoki KATAYAMA

Abstract

In ground anchors employed to prevent landslides, grout injected into and filling the free anchor length result in the peripheral surface also adhering to the ground. On this account, a structure is realized whereby the frictional resistance of the peripheral surface is expressed along the entire length of the anchor. The frictional resistance of the peripheral surface in the free anchor length is not considered in the process of anchor design, but research has shown that the proportion borne by this frictional resistance is relatively large. For this reason, when the anchor is under tension, it is thought that upward stress is transmitted to the ground via frictional resistance in the peripheral surface of the free anchor length. This interferes with the downward stress of the reaction plate - in other words the clamping force - and it has been pointed out that there is a possibility that the clamping effect, which is one of the effects that the anchor suppresses landslides, is thereby diminished. This research used full-scale anchor experiments, experiments with models, and numerical experiments to compare the in-ground stress accompanying tension in two anchor types (one with frictional resistance along the peripheral surface of the free anchor length and one without). The findings for the anchor with frictional resistance along the peripheral surface of the free anchor length indicated that the clamping force was reduced and transmitted relatively deeper. From this fact, frictional resistance along the peripheral surface of the free anchor length is presumed to be a factor that hinders transmission of the clamping force.

Key words : ground anchor, free anchor length, surface friction resistance, in-ground stress, clamping force

和文要旨

地すべり対策として用いられるグラウンドアンカーでは、自由長部になされるグラウトの充填注入により、その周面も地盤と付 着するため、アンカー全長にわたり周面摩擦抵抗が発現する構造となる。アンカー設計上は、自由長部の周面摩擦抵抗は考慮して いないが、その摩擦抵抗が負担する割合は比較的大きいことがこれまでの研究で示されている。このため、アンカー緊張時には自 由長部の周面摩擦抵抗を介し、上向きの応力が地盤に伝達されるものと思われ、これが受圧板による下向きの応力、すなわち締付 け力と干渉することで、アンカーの地すべり抑止効果の一つである締付け効果が低減される可能性が指摘される。そこで本研究で は、アンカーの実大実験、模型実験および数値実験により、自由長部の周面摩擦抵抗の有無による2種類のアンカーについて、緊 張に伴う地盤内応力を比較した。その結果、自由長部の周面摩擦抵抗が存在するアンカーは、相対的に締付け力が低減され深部に 伝達することが示された。このことから自由長部の周面摩擦抵抗は、締付け力の伝達を阻害する要因となるものと推定した。 キーワード:グラウンドアンカー、アンカー自由長、周面摩擦抵抗、地盤内応力、締付け力

1. はじめに

地すべり対策工としてのグラウンドアンカー(以下, アンカーとする)は、大別してアンカー頭部、引っ張り 部(自由長部)、アンカー体部の3つの基本要素に分け られる。このうち自由長部には、防食機能の増加と孔壁 周辺地盤の緩み防止を主な目的としたグラウトの充填注 入が行われる¹⁾。これにより,アンカー体部と自由長部 には一連のグラウトによる柱体が形成され、アンカー全 長にわたり周面が地盤と付着することになる。

一般的な施工では、アンカー体部でのグラウトの加圧 注入と自由長部での充填注入は連続的に行われるため, アンカー頭部の緊張時にはアンカー体のみならず自由長 部においても周面摩擦抵抗が発現することは明らかであ る。

一方,アンカー体の周面摩擦抵抗(以下, *τ*_Aとする) を最終的に決定する際に引抜き試験を行うが、この場合、 自由長部のグラウトの充填注入は実施しない¹⁾。このた

め、アンカー設計時には、引抜き試験結果によるτ₄から 必要なアンカー体長・径が決定され、自由長部に発現す る周面摩擦抵抗(以下、TFとする)は設計上考慮されて いないのが現状である。

しかしながら,実際的にはTFがアンカー緊張力に対し 抵抗力として働いていることは十分に考えられることか ら、*τ*_Fはアンカー引抜けに対する安全率的な役割を担っ ており,引抜け事故が予防されている可能性もある。

自由長部周面に発現するTFは、周辺地盤の状態にもよ るが、決して小さくはないことがこれまでの研究によっ て報告されている。アンカー打設地盤の周辺を掘削し、 アンカーへの影響を調査した研究²⁰によると、アンカー 体部を完全に露出させた場合でも,完全な引抜けには至 らず,緊張力の約半分(384.2kN)をτ_Fが負担している ことが示されている。また、アンカーの引張材であるテ ンドンからグラウトへの応力伝達機構に関する研究。で は、自由長部グラウト内に大きな圧縮ひずみが発生して いることから、自由長部周面にも比較的高い周面摩擦抵 抗が発現していることが示されている。

一方、アンカー引抜き時の周面摩擦抵抗に関する模型 実験4)においても、自由長部でもアンカー体部と同じよ

連絡著者/corresponding author 株式会社日本海技術コンサルタンツ a)

Nihonkai Technical Consultants CO., Ltd 〒699-0403 島根県松江市宍道町西来待2570-1

²⁵⁷⁰⁻¹ Nishikimachi, Shinji-cho, Matsue-City, Shimane Prefecture, 699-0403, Japan b) 山口大学大学院

うに周面摩擦抵抗が作用していることが確認されている。

これらのアンカーの実大実験および模型実験により, 自由長部にも周面摩擦抵抗が発現することや,その負担 割合が比較的大きいことが明らかにされている。

ここで、受圧板に比較的近い自由長部においても周面 摩擦抵抗が発現することによる,アンカー機能上の問題 点が指摘される。アンカー緊張時の地盤内部には,周面 摩擦抵抗により周辺地盤に伝達される上向きの応力と, 受圧板から伝達される下向きの応力が発生する。このと き,受圧板に近い位置,すなわち自由長部においてでFに よる上向きの応力伝達が周辺地盤になされた場合、受圧 板からの締付け力が地盤深部へ伝達されるのを阻害され る恐れがある。また、*TF*の存在により、受圧板の締付け 力を期待する上で必要な,周辺地盤の適正な変位が生じ 難くなる可能性も考えられる。つまり、受圧板の締付け に伴う地盤の変位がTFにより妨げられ、締付け力はアン カーグラウトを下に押し込む作用に変換される可能性が 示唆される。これは、基礎杭の周辺地盤沈下に伴うネガ ティブフリクションと同じメカニズムの問題と考えられ る。

しかしながら,このようなTFがアンカーの効果に及ぼ す影響についてはほとんど注目されておらず,現状では アンカーの設計にも考慮されていない。

現行のアンカー設計では、アンカー力の100%がすべ り面に作用する前提に立ち、「締付け効果」と「引止め 効果」の2つの概念が考慮されている。このうち「締付 け効果」はすべり面に対する垂直力を増大させ、せん断 抵抗力を増加させる概念であるため、設計アンカー力を 左右する要因となり、その評価についてはより的確性が 求められる。しかし、受圧板から伝達されるアンカー力 が地盤内部で分散し、すべり面へ伝わる応力度が減少す ることは明らかであり、設計思想と実際現象の乖離が指 摘されている⁵¹。このため、最近では模型実験や有限要 素法(以下、FEMとする)などを利用した数値実験に よる研究^{61~80}がなされているが、これらにおいても*τ*Fの 影響を考慮したものは認められない。

そこで本研究では、τ_Fが締付け力に及ぼす影響を評価 することを目的とし、実地盤に打設した実大アンカー と、2種類のモデル地盤を対象とした模型アンカーについ て、自由長部に周面摩擦抵抗がある場合と無い場合の2 種類のアンカーを緊張した際の地盤内部のひずみ分布を 測定し、応力伝達状況を比較した。さらに、FEMによ る数値実験も行い、これらの実験結果から、τ_Fがアンカー の地すべり抑止効果の一つである締付け効果へ及ぼす影 響を考察した。なお、本論文では応力の圧縮側を正とし ている。

2. アンカー実大実験

2.1 実験概要

アンカー実大実験では、自由長部にグラウトの充填注

入を行ったものと,充填注入を行わないものの2種類の 実大アンカーを地盤に打設し,アンカー緊張時のテンド ン拘束具,グラウト,地盤内部のひずみ測定を行った。 図-1に実験概要を示す。

実験地は、新第三系の泥岩が分布する地区であり、同 質岩による盛土 (N=4~10程度) が上位を5m程度覆っ ている箇所である。また、泥岩層は上位5m程度までは 風化帯 (N=20~40程度) が分布する。泥岩は全体的に 塊状無層理な状態であり、概ね均質な地盤状態である。 なお、地表面からGL-10m付近より現れる泥岩新鮮部 (N \geq 50) においてアンカー引抜き試験を行った結果、 $\tau_A = 0.50$ MN/m²の結果を得た。

2.2 実験方法

2.2.1 アンカーの打設

アンカーの打設方向は鉛直下向きとし,充填注入の有 無により2種類のアンカーを打設した。以下,充填注入 を行わないアンカーをCase-1,充填注入を行うアン カーをCase-2とする。

実験に供するアンカーは摩擦圧縮型アンカーを用い, アンカー自由長10.0m,アンカー体長3.0mとした。

削孔はロータリーパーカッション式削孔機を使用し, 削孔径φ115mmとした。削孔後,入念な孔内洗浄を行 い,テンドン挿入およびグラウト(普通セメントW/C =50%)の注入を行った。

アンカー体部にはケーシング加圧による加圧注入を 行った。より確実なアンカー体造成のために,アンカー

図ー1 アンカー実大実験概要図 Fig.1 Experiment summary by the full-scale anchor

体長3.0mに対し、1.5m毎に2回に分けて加圧注入を 行っている。その後、充填注入を行い、Case-1のア ンカーについては自由長部のグラウトを排出し、自由長 部周面に摩擦抵抗が生じない構造とした。

なお,このアンカーの極限引抜き力(*T*_{ug})は541.7kN, テンドンの降伏点荷重(*T*_s)は608kNである。

2.2.2 ひずみゲージの設置

地盤内部のひずみ測定は,地すべり調査で一般的に用 いられるパイプ式ひずみ計を用い,アンカーの緊張に伴 う地盤の水平方向へのひずみを測定した。また,ひずみ ゲージを貼付した塩化ビニル板(長さ100mm,幅30mm, 厚さ3mm)をパイプ式ひずみ計に取り付け,地盤の鉛 直方向のひずみも測定できる構造とした。

観測孔の周囲はベントナイトを配合した貧配合のセメ ントミルク(一軸圧縮強さ $q_u \approx 1 \text{ MN/m}^2$)で充填し, 周囲の地盤との力学的強度の連続性をもたせるように努 めた。

アンカーには、テンドン拘束具に4箇所ひずみゲージ を貼付し、拘束具の軸ひずみを測定した。また、アンカー 体および自由長部のグラウト充填部分にはモールドゲー ジを配置し、グラウト内に発生するひずみを測定した。

各ひずみゲージの設置位置については前出図-1に示 し,設置箇所の詳細を図-2に示す。

2.2.3 実験方法

打設した2種類のアンカーについて多サイクル確認試 験を行い,各荷重段階におけるアンカーおよび周辺地盤 に設置したひずみゲージのひずみを測定した。

多サイクル確認試験は初期荷重を50kNとし,計画最 大荷重である500kNまでを6サイクルとした。各サイク ルでの新規荷重は100kN,160kN,230kN,310kN,400 kN, 500kNである。また、荷重保持時間は新規荷重段 階で10分間、履歴荷重段階で2分間を標準とした。

ひずみの測定は,各荷重段階における荷重保持時間の 開始と終わりで測定した。ただし,結果比較に用いるひ ずみは,各サイクルにおける新規荷重10分保持後の値を 用いている。

2.3 実験結果と考察

2.3.1 地盤内部のひずみ分布

各載荷段階における地盤内部のひずみ分布状況を図-3および図-4に示す。図-3はパイプ式ひずみ計に貼 付したひずみゲージから測定した地盤応力の水平成分に よるひずみ(以下, εxとする)を示し,図-4は塩化ビ ニル板に貼付したひずみゲージから測定した地盤応力の 鉛直成分によるひずみ(以下, εxとする)を示したもの である。

なお, ε_xはアンカーを基準軸とし,外側へ向かう方向 を圧縮方向,内側へ向かう方向を引張方向とした。 (1) ひずみの水平成分ε_x

Case - 1 では全体的に地表面付近で荷重増加に伴う ひずみの累積増加が認められた。観測孔P-1, P-2に おいて,ひずみゲージS13が圧縮方向に最も大きく,そ の下位のS12がそれに次いで大きい値を示しており,受 圧板の締付けによる地盤内部応力の側方向への伝達が伺 える性状を示している。

また, P-1ではアンカー体直近のS2~S4において, S4をピークとした引張方向へのひずみの累積が認めら れる。これはアンカー体の引抜き抵抗がr4を介して周辺 地盤に生じ,発生した引張応力による弾性的な地盤挙動 を捉えたものと考えられ,既往研究⁹による摩擦圧縮型 アンカーのアンカー体周辺地盤の応力状態と調和的な結 果である。

Case - 2でも、地表面付近での圧縮方向へのひずみ の累積が顕著であり、Case - 1と同様な応力状況下に あることが伺える。なお、P-5のS13では500kN載荷 時にひずみ方向が反転している現象がみられるが、地盤 もしくは観測孔充填材の局所的な破壊に伴う応力開放の 影響と考えられる。

地盤の不均質性を考慮すると単純には比較できないが、 ひずみ量としてはCase-1の方が全体的に大きく、比 較的低い荷重段階で深部までひずみが到達していること から判断すると、Case-1の方が高い締付け力を発揮 していると考えられる。

(2) ひずみの鉛直成分ε_z

Case - 1では、アンカー直近の観測孔P-1において、 全体にわたって顕著なひずみの変化が認められた。低荷 重段階においては、S12~S13に下向きの応力状態を示 すひずみの累積が認められるが、荷重段階が230kNを越 えた辺りから、ひずみの累積方向が反転する現象がみら れる。一方で、その下位のS9~S10では一貫して下向 きの応力状態を示すひずみの累積を示している。

図ー3 地盤の水平ひずみ分布 Fig. 3 Horizontal strain distribution of the ground

前述した&のひずみ分布を考慮すると、S12~S13にみ られたひずみ方向の反転は、受圧板による締付け力の増 加に伴い地表付近でパイプが水平方向に大きく変形し、 その影響でパイプに設置した塩化ビニル板も追従して変 形したことが要因と推察される。なお、P-1のS11に ついては荷重段階に関わらずひずみが測定されず、ゲー ジに不具合があったものと考えられる。

また、アンカー体周辺地盤のひずみゲージでは、P-1のS2とS5で上向き、S3とS4で下向きの応力状態 を示すひずみが測定された。地盤が弾性状態である場合、 アンカー体の上方への変位に伴い、周辺地盤にはτAを介 して上向きの応力が発生する。このことを考慮すると、 S3とS4のひずみは別の要因が影響した可能性が考え られる。

前述の&のひずみ分布から、S2~S4においては載荷 に伴う引張ひずみが測定されており、地盤とともにひず み計がアンカー側に引張られた状況にあることが考えら れた。このため、S3~S4においても地表付近同様, 水平方向の変位に影響を受けた可能性が考えられる。

ただし、S5についてはアンカー体上端部よりも上に

図ー4 地盤の鉛直ひずみ分布 Fig. 4 Vertical strain distribution of the ground

位置しているため,アンカー体からの上向きの応力によ る地盤のひずみを捉えたものと考えられる。

一方Case - 2では、全体的にあまりひずみが認めら れない結果となった。最もひずみが表れたP-5におい ては、地表面下2mまでの範囲に顕著なひずみが認めら れたが、Case - 1とは異なりアンカー体周辺において はひずみが認められない。なお、P-5のS13のひずみ 累積方向が上向きとなっていることについては、Case - 1と同じく、地表付近のパイプの変形が影響している 可能性が考えられる。

以上の結果から, Case - 1 では地表面下 5 m付近まで 受圧板から下向きの圧縮応力が伝達され,加えてアン カー体周辺ではτ₄を介した引張応力が作用していると判 断される。また,アンカー体上端部よりやや上部の周辺 地盤については,アンカー体から伝達された上向きの圧 縮応力が作用していると判断される。

一方, Case - 2 では地表面下 3 m付近まで受圧板から 下向きの圧縮応力が伝達されているが, その大きさは Case - 1 よりも小さいと考えられる。また, それ以深 の地盤に大きなひずみが分布しないことから, アンカー 周面から地盤へ伝達される応力は小さいことが示された。

2.3.2 テンドン拘束具軸力分布

テンドン拘束具のひずみから換算した軸力分布を図-5に示す。

いずれのケースも先端部で大きな圧縮力が発生してお り、摩擦圧縮型アンカーの性状を表している。ケースに よる軸力分布の差は極めて少なく、アンカー緊張時にお ける拘束具からアンカー体への応力伝達状況は同等で あったことを示している。

2.3.3 グラウト内の圧縮力分布

アンカー体および自由長部におけるグラウトに設置し たモールドゲージからは全てにおいて圧縮側のひずみが 測定された。ひずみから換算した圧縮力の分布を図-6 に示す。

アンカー体におけるグラウト内の圧縮力は,載荷荷重 400kNまではCase - 1の方が相対的に高いものの,荷重 増加に伴う圧縮力の増加割合においてはCase - 2の方 が大きい傾向にあり,最大荷重である500kN載荷時では Case - 2の方が高い圧縮力を示す結果となった。

また、Case-2の自由長部中央のモールドゲージM 5に着目すると、アンカー体とは対照的に、低い荷重段 階から比較的大きな圧縮力が発生しており、160kN載荷 時にはアンカー体グラウトと同等の圧縮力が発生してい るが、そこで圧縮力の増加は頭打ちとなっている。

これらのことから, Case - 2の周面摩擦抵抗は, 低 い荷重段階ではτFが負担する摩擦抵抗が大きい傾向に あり, 載荷荷重の増加に伴い摩擦抵抗の負担割合が深部 ほど大きくなった状況を示すものと考えられる。すなわ ち,荷重段階が上がるに従い,周面摩擦抵抗の主要な発現 位置が浅部から深部へと遷移する性状であったといえる。

なお,低い荷重段階からM5で大きな圧縮力が働いた 要因としては,この深度付近が盛土層と泥岩との層境界 付近であることを考慮すると,ルーズな盛土からの側圧 を強く受け摩擦抵抗が大きくなった影響が考えられる。

アンカー模型実験

3.1 実験概要

アンカー模型実験は、アンカーを無限大の直径をもつ ものとした2次元平面ひずみ問題と考え、高さ600mm, 幅550mm,奥行き100mmの鋼製の実験土槽を用いて行っ た。なお既往研究により、模型アンカーの3次元円筒形 モデルと2次元的平面ひずみモデルでは、引抜き量と引 抜き抵抗力の関係に同様の傾向が認められている¹⁰⁰。し たがって、本研究では3次元的なアンカーが周辺地盤に 及ぼす影響を、簡便な平面的ひずみ問題として近似的に 評価できるものとした。

模型実験は,島根県産来待砂岩粉体を主体とした人工 地盤に打設したアンカーを引張り,その時のアンカーお よび地盤内部のひずみを測定することで実験を行った。 地盤内部のひずみ測定は,地盤材打設時に埋設した3本

Fig. 5 Axial force distribution of the anchor restraint

Fig. 6 Compression force distribution of the grout

のひずみ計にて行った。図-7にアンカー模型実験の概 要を示す。

実験に供した地盤材は、全体的に均質な1層モデルと、 アンカー体設置地盤の強度が高い2層モデルの2種類と し、それぞれのモデル地盤でtrがある場合とない場合で 2種類、計4種類の実験を行っている。実験ケースの一 覧を表-1に示す。

3.2 実験方法

3.2.1 ひずみ計の作製

ひずみ計は,長さ620mmの塩化ビニル製角パイプ(断面寸法40×30mm)の内部に三軸ひずみゲージを貼付したものを用いた。

ひずみゲージは,深度方向に75mm間隔で貼付し,1本 あたり8箇所のひずみゲージを貼り付けた。ひずみ計は, ゲージコードをパイプ内に通した内管型とし,充填する 地盤材に疎密が生じ難い構造とした。

ひずみ計内部にはシリコン材を充填し,角パイプのね じれに対する剛性を高め,全体的に均一な挙動をするよ うにした。また,ひずみ計の表面には,#80のサンドペー パーで十分な粗面加工を施し,地盤材との付着性・連続 性を高めるように努めた。

3.2.2 模型地盤の作製

実験土槽の内面には、シリコングリスを塗布し、その 上に厚さ0.1mmのフィルムをかぶせ、地盤材と土槽内 面との摩擦を極力低くする構造とした。これにより、ア ンカーの緊張力や受圧板の締付け力などと比べ、土槽内 面との境界で発生する摩擦力は十分小さいものと考えら

れる。このため、本研究では土槽内面の摩擦は考慮して いない。

土槽内部にひずみ計を3箇所に設置し,また,アンカー 打設箇所にはボイド管として角パイプ(長さ620mm, 幅50mm,奥行き100mm)を設置し,地盤材を打設した。

地盤材は,島根県産来待砂岩粉体と普通セメントおよ び水を質量比3:2:2で配合した貧配合ソイルセメン トを用いた。ただし,2層モデルのアンカー体設置地盤に ついては,普通セメントに代わり早強セメントを用い, 強度が高い地盤条件を想定したモデルとしている。また, 養生後の体積収縮を抑え,ひずみ計と地盤材との密着性 を保つために膨張材を添加している。

なお,地盤材に来待砂岩粉体を混合させることで,軟 岩に近い強度をもち,均質かつ等方的な性質の人工軟岩 が,少ない単位水量で作製できることから,ブリージン グの発生を大幅に抑えることができ,良好な人工地盤を 作製することができる。

地盤材打設1日後に,アンカー打設箇所のボイド管を 抜き,アンカーを打設し3日間養生した。このため,地 盤材の養生日数は4日としている。

テストピースによる要素試験より、1層モデルの地盤 材は一軸圧縮強さ $q_u = 6 \text{ MN/m}^2$ 、弾性係数 $E_{50} = 500 \text{MN}$

表-1	実験ケース一覧表
Table, 1	Experiment cases list

ケース名	自由長部 周面摩擦	地盤材 層構成	荷重ステップ (kN)	極限引抜き力 (kN)
Case-11			0.98	18.64
Case-12	<i>t</i> >1	1 層	0.49	12.75
Case-13	1 A C		0.49	15.21
Case-14		2 層	0.49	22.07
Case-21			0.98	29.43
Case-22	あり	1層	0.49	25.51
Case-23			0.49	29.92
Case-24		2 層	0.49	31.88

 $/m^{2}$ 程度であり、2層モデルのアンカー体設置地盤については $q_{\mu} = 10$ MN/ m^{2} 、 $E_{so} = 600$ MN/ m^{2} 程度であった。

3.2.3 アンカーの打設

図-8に実験に供用した模型アンカーの詳細な構造を 示す。アンカーテンドンとして、 Ø8mmのステンレス 製ネジ材を2本用いた。テンドンの先端にはØ26mmの 支圧板およびM8ナットを取り付けており、摩擦圧縮型 アンカーと同様な構造とした。また、支圧板より上部の テンドンにはポリプロピレン製のシース材を被せグラウ トとの付着を防ぎ、アンカー頭部での緊張力がテンドン 先端部まで直接届く構造としている。

2本のテンドンの間には、モールドゲージを深度方向 に75mm間隔で計8箇所に設置し、アンカー緊張時にお けるグラウト内のひずみ測定も行った。

グラウトは一般的なアンカーと同じく普通セメントを

用い,水セメント比は50%とした。また付着性向上のため,地盤材と同様に膨張材を添加した。ただし,通常の アンカーではアンカー体部にグラウトの加圧注入を行う が,本模型実験では加圧注入は行っていない。

自由長部周面摩擦を除去する場合については,自由長 部地盤のアンカー側内壁にシリコングリスを塗布し,さ らに厚さ0.1mmのフィルムをかぶせた上でグラウトの 打設を行った。

3.2.4 実験方法

模型実験は、1サイクルの引抜き試験とした。荷重段階 は、1段階につき0.49kNもしくは0.98kNとし、アンカー の引抜けが確認できるまで単調載荷を行った。また、各 荷重段階における荷重保持時間は2分間を標準とし、ひ ずみの測定は、各荷重保持時間経過後に測定した。

3.3 実験結果と考察

3.3.1 地盤内応力分布

(1) 1層モデル

1層モデルの模型実験は、TFの有無により各3回ずつ、 計6回の実験を行った。表-1に示した実験ケースのう ち、代表としてCase-13とCase-23について、地盤内 部の最大主応力分布を図-9に示す。なお、ひずみ計P -1については、地盤内部の応力分布に対称性があるも のと考え、アンカーを中心軸とし位置の反転を行ってい る。

地盤内応力は,設置した各ひずみゲージから導かれた 最大主ひずみに,地盤材の弾性係数E50を乗じ応力とし たものであり,測定点間は平均により補完している。な お,応力算出にあたり,ひずみ計は地盤材に対し十分軟 らかい強度であるため,埋設したひずみ計は周囲の地盤 と同じ挙動をするものと考え,地盤材のE50を用いた。

図-9より,各ケースの地盤内応力分布を比較すると, 地盤内の応力分布は,初期の荷重段階から,各ケースで 地盤内に発生する応力状況に大きな差異が認められる結 果となった。Case-13については,低荷重段階から比 較的大きな圧縮応力がアンカー周辺に作用している状況 が認められ,荷重段階が上がるに従い,その特徴が顕著 にみられるようになった。圧縮応力の作用範囲が受圧板 直下からアンカー体上端付近までのアンカー周辺である ことと,その主応力方向から判断すると,受圧板の締付 けによる下向きの応力と,アンカー体の引抜き抵抗に伴 う上向きの応力により,その間の地盤が圧縮された状態 を表しているものと考えられる。

一方,アンカー体設置地盤においては,主に引張応力 が働いていることが認められる。このことは,アンカー 体周面は地盤と十分に付着しており,アンカーへの導入 力が地盤に伝達され,その抵抗力としての引張応力が地 盤に作用している状況を示している。

アンカーから最も離れたひずみ計P-3の中段部(ひ ずみゲージS4~S6)には圧縮応力が集中しており, その上下には引張応力が分布する特徴が認められた。こ れらの応力の境界線は、受圧板およびアンカー体それぞ れに起因する応力の伝播範囲を示すものと考えられ、概 ね45度の広がりであることがわかる。この圧縮と引張の 応力状態の境界部は、地盤破壊の危険性が高いせん断帯 が形成されつつある部分と考えられる。ただし、今回の 模型実験においては、いずれのケースでも地盤破壊は認 められず、アンカーと地盤との摩擦切れにより実験を終 えている。

対照的にCase-23は、低荷重段階における地盤内の 応力変化が小さく、15kN程度の荷重から地盤内の応力変 化が明瞭に認められた。載荷荷重14.7kN時の応力分布 は、受圧板直下付近とアンカー体付近にやや高い圧縮応 力が作用しているが、その大きさはCase-13よりもか なり小さいことがわかる。

アンカー引抜け直前の29.4kN載荷時には,アンカー 体下端付近に高い圧縮応力が認められたが,その主応力 方向が水平に近いことから,局所的な地盤破壊に伴った 応力方向の変化が現れたものと考えられる。

なお,ひずみ計P-2などで受圧板直下よりもその下 位の応力が高くなっている場合が認められたが,これは ひずみ計上端部は地盤材との付着長が短いために付着性 が悪く,地盤のひずみがひずみ計に伝達され難かったこ とによるものと考えられる。

以上のように、1層モデルでのアンカー模型実験の結 果から、τ_Fが無いアンカーについては、アンカー緊張に 伴う地盤内応力の状態から、受圧板による下向きの圧縮 応力に加え、アンカー体から伝達される上向きの圧縮応 力が作用し、その間の地盤が圧縮される状態となること が示された。

これに対し, *τ*_Fがあるアンカーについては, アンカー 緊張に伴う地盤内応力の変化が比較的少ない特徴がみら れ,受圧板からの締付け力が地盤深部まで効果的に伝達 されていない状況が示された。

(2) 2層モデル

アンカー体設置地盤と自由長部地盤との間に強度差が ある場合の地盤内応力分布を調べるために、2層モデルに よるアンカー模型実験を行った。図-10に、Case-14 とCase-24における地盤内部の最大主応力分布を示す。 なお、極限引抜き力 T_{ug} については、Case-14では T_{ug} = 22.1kNと1層モデルの1.2~1.7倍、Case-24では T_{ug} = 31.9kNと1層モデルの1.1~1.3倍であり、 τ_F が無いケー スの方が T_{ug} の増大が著しかった。

Case-14の地盤内応力分布からは、1層モデル同様, 低荷重段階からアンカー周辺に圧縮応力が作用している 状況が観察され,載荷荷重の増加に伴い,その強さおよ び作用範囲が広がる傾向が認められた。また、1層モデル と同様に,圧縮応力の作用範囲の外側には引張応力が作 用しており,周辺地盤がアンカー体の引上げに抵抗して いる応力状況であることが伺える。ただし,Case-13 と比較すると,引張応力の大きさが小さく,作用範囲も

狭い特徴がみられることから,アンカー体設置地盤の強 度が上がったことによる影響を表していると考えられる。

したがって、アンカー体から伝達される上向きの応力 が、Case-13よりも低減されているものと考えられる。 このため、自由長部地盤には受圧板からの締付け力が優 勢に作用し、その結果、ひずみ計P-2の最大主応力方 向が全体的に鉛直方向となったものと考えられる。また、 このことからも、Case-13において自由長部地盤で発 生した圧縮応力は、アンカー体から伝達された上向きの 応力の影響を強く受けていたものと判断できる。

Case-24については、載荷荷重15kN程度までは、地 盤内の応力変化が小さく、1層モデルと同様の傾向が認め られた。しかし、載荷荷重19kNあたりから2層の地盤 材の層境界付近における引張応力の発生が認められ、地 盤材が層境界で分断されつつある状況を示している。こ れは、τFの影響により、自由長部地盤が引上げられてい る状況であると考えられ、受圧板から下向きに伝達され る応力が、層境界(地すべりの場合はすべり面)に対し、 締付け力として有効に作用していないことを表している。

このことから,地盤内に地層境界やすべり面などの力 学的不連続面が存在する場合,τ_Fの影響により,アンカー の緊張力が不連続面で地盤を分断する力として作用し, 効果的な締付け力の伝達がなされない可能性が示唆される。

3.3.2 グラウト内の応力分布

図-11に、1層モデル、2層モデルの各代表ケースにお ける、荷重段階ごとのグラウト内部の応力分布を示す。 なお、図の応力は、モールドゲージにより得られたひず みに、グラウトの弾性係数Esoを乗じ応力としたもので あり、圧縮側を正とする。

全体的に、アンカー体下端部の圧縮応力が高く、摩擦 圧縮型アンカーの特徴が認められた。Case - 13および Case - 14は、自由長部の圧縮応力がほぼゼロであるこ とからたが発現しておらず、一方、自由長部にも圧縮応 力が作用するCase - 23およびCase - 24ではたが発現し ていることがわかる。なお、今回の模型実験で行った全 てのケースにおいて、載荷荷重の増加に伴った各深度で の応力増加割合はほぼ一定であり、荷重段階による周面 摩擦抵抗の負担割合の深度遷移は認められなかった。

本模型実験におけるアンカー表面積は深度によらず一 定であることから、グラウト内に発生する圧縮応力と周 面摩擦抵抗は比例関係にあると考えることができる。こ のため、*τ*_Fがあるケースについて、アンカー全体の周面 摩擦抵抗に対する*τ*_Fの摩擦負担割合(以下,*R*_Fとする) を、グラウト内の応力状態から間接的に求めることがで きる。

ここで,自由長部におけるグラウト内応力を σ_F ,ア ンカー体部のものを σ_A とすると,摩擦負担割合 R_F は式 (1)によって導かれる。

図ー11 グラウト内部の応力分布 Fig. 11 Stress distribution of the grout

1 層モデルであるCase - 23は、 σ_A に対して σ_F が比較 的大きいことから、 τ_F の摩擦負担割合は R_F = 0.48と高 く、アンカー体とほぼ同じ割合となることがわかる。一 方、2層モデルであるCase - 24は、 R_F = 0.26と大幅に低 下する。これは、図-11に示すとおりCase - 23とCase - 24で σ_F に大きな差異が認められず τ_F も同等であったと 考えられることから、アンカー体設置地盤の高強度化に 伴った τ_A の増大が大きく影響した結果といえる。

これらの比較により,アンカー体設置地盤と自由長部 地盤の強度差が*R_F*に大きな影響を及ぼすことが示され た。したがって岩盤斜面のように,地盤の強度差があま り無い地盤条件に打設されたアンカーにおいては,*R_F* が大きくなることが予想され,*τ_F*を考慮したアンカーの 設計を行う必要があると考えられる。

ただし、本模型実験ではアンカー体への加圧注入を 行っていない。一般的に、加圧注入によりでAが増大する ことがわかっており、モデル地盤を用いた加圧注入の影 響を評価した研究^mでは、均質な地盤においては加圧注 入によるグラウトの高強度化により、でAが概ね1.5倍と なることが示されている。 このことを考慮し、今回の模型実験結果における σ_A を1.5倍として R_F を再計算すると、Case - 23では R_F = 0.38、Case - 24では R_F = 0.19となり、その割合は減る ものの、厳密に T_{MZ} を決定する上では決して無視できな い割合であると考えられる。特に自由長部が長いアン カーの場合は、その影響を大きく受けることが予想され、 より正確な T_{MZ} の算出および経済的なアンカーの設計に おいては、 τ_F を考慮する必要があると考えられる。

4. アンカー数値実験

4.1 実験概要

アンカー模型実験結果から, *τ*_Fが無いケースの方が自 由長部地盤に高い圧縮応力が作用することが明らかと なった。ただし,この圧縮応力は受圧板からの締付け力 に加え,アンカー体から伝達される上向きの応力が作用 した結果,自由長部地盤が上下からの圧縮を受けた影響 である可能性が考えられる。

一方, *τ*_Fがあるケースについては,周辺地盤の応力変 化が小さく,受圧板からの締付け力も地盤深部まで伝達 されていない状況が確認された。

各ケースにおける地盤内応力伝達機構の違いを検討す るために、FEMによる数値実験を行った。

数値実験として,まず1層モデルでの模型実験につい て再現解析を行い,モデルの妥当性を検討した後,受圧 板中央直下における地盤の鉛直応力分布に加え,アン カー周面要素のせん断応力分布から,アンカー緊張時の 地盤内応力状況の比較を行った。また,地すべりのよう に自由長部地盤がより軟質な場合を想定したモデルにつ いてもFEM解析を行い, TFの影響を考察した。

4.2 再現解析

4.2.1 解析モデル

模型実験はアンカーを中心に左右対称で、奥行方向へ も対称性をもつことから、解析モデルはアンカーを中心 とした模型実験の半分の領域とし、奥行き方向へは1/ 10のモデル化を行った。有限要素メッシュを図-12に示 す。

解析は、3次元弾完全塑性有限要素解析とし、有限要素 は20節点6面体アイソパラメトリック要素を用い、積分 点(Gauss点)が8点の減退積分要素とした。また、構 成則は、降伏規準をMohr-Coulomb式、塑性ポテンシャ ルをDrucher-Prager式としたMC-DPモデルとした。

地盤材,アンカー,受圧板を構成する各要素は,全て ソリッド要素としている。地盤とアンカー間には摩擦切 れが生じるため,本来はジョイント要素を用いることが 望ましいが,今回は簡単のため,周面要素として通常の ソリッド要素を薄く配置することで摩擦切れを表現し た¹²⁾。ただし本数値実験では,アンカーが摩擦切れを生 じた時点までの地盤内応力分布を調べることに主眼を置 いているため,要素タイプの違いによる影響はほとんど ないものと考えられる。

図ー12 有限安系メッシュ Fig. 12 Finite element mesh

境界条件は、側面については各側面と直交する方向へ の変位を拘束し、底面については鉛直上方への変位のみ を許す条件とした。載荷荷重は、アンカー下端に上向き の荷重として与え、その反力を受圧板表面に等分布荷重 として与えた。1ステップ当りの載荷荷重は,0.6kNと した。

解析ケースは模型実験と同じくでFの有無により2パ ターンとし、でFが無い場合をCase-1A,でFがある場合 をCase-2Aとする。

4.2.2 材料定数の決定

各要素の材料定数を表 – 2に示す。地盤材の弾性係数 Eおよび粘着力c,単位体積重量 γ_{t} については、模型実 験時に測定した要素試験の値を参考に決定した。また、 ポアソン比 ν は0.3とし、静止土圧係数 K_{0} については式 (2)より求めた¹³。

 $K_0 = \frac{\nu}{1-\nu}$ (2)

アンカーおよび受圧板の破壊は考えず,Eおよびcは 十分高い値とした。また,自由長部およびアンカー体周 面要素については,模型実験におけるグラウトの一軸圧 縮強さq_aに加え,測定したグラウト内の応力分布を参考 に,数種のEおよびcを与え,要素毎に最も再現性の高 い値を採用した。Case – 1 Aにおける自由長部周面要素 については,Eおよびcを極めて小さい値としている。

材料名	E (MN/m ²)	ν	c (kN/m ²)	$\frac{\gamma_t}{(kN/m^3)}$	K_0
地盤	500	0.3	3000	18.0	0.43
周面要素 (自由長部)	10~20**1	0.3	200 ~ 400 ^{≈1}	18.0	0.43
周面要素 (アンカー体)	15 ~ 100 ^{**1}	0.3	300~2000 ^{**1}	18.0	0.43
アンカ ー	Large	0.2	Large	23.0	0.25
受圧板	Large	0.2	Large	79.0	0.25

表一 2 材料定数一覧 Table 2 List of material constants

※1:要素試験結果および模型実験におけるグラウト内の応力分布を参考に、要素毎に最も再現性の高い値を採用した。

なお、本研究におけるFEM解析では、内部摩擦角お よびダイレイタンシー角は考慮していない。

4.2.3 解析結果

再現解析の結果, Case - 1 Aの極限引抜き力は*T*_{ug} = 22.2kN, Case - 2 Aは*T*_{ug} = 33.5kNとなり, 概ね模型実験結果に近い*T*_{ug}を示す結果が得られた。

図-13に,FEM解析による15.6kN載荷時における地 盤内部の最大主応力分布を示す。最大主応力の分布には, 既出図-9に示した模型実験結果と同様な傾向が認めら れ,全体的な再現性は良好と考えられる。

局所的な再現性を検討するために、受圧板下部地盤に おける鉛直応力の比較を行った。図-14および図-15に、 模型実験でのひずみ計P-1の各ひずみゲージ位置にお ける、載荷荷重に伴う鉛直応力の2の応力経路を示す。

τ_Fの有無に関わらず,全体的には高い再現性が認めら れる結果といえる。ただし,τ_FがあるケースのS8に関 しては模型実験結果から大きく乖離しており,S7につ いてもやや再現性が低い結果となった。これらの部分に みられた結果の乖離については,前述のように模型実験 において,ひずみ計上端部の地盤材との付着長の短さが 影響し,地盤のひずみが過小に計測された可能性が考え られ,Case-1Aでの再現性の高さを考慮すると,模型 実験においても解析結果と同等の応力が発生していたも のと判断される。

以上より,全体的には良好な再現性であるといえるた め,本モデルを用い,τrが地盤に伝達される締付け力に 及ぼす影響を考察する。なお、τrがある場合の模型実験 結果において,受圧板直下付近の応力がうまく捉えられ なかった要因としては,ひずみ計上端部の付着長が短い ことに加え,τrを介した上向きの応力が加わり,上下か らの強い圧縮を受けた影響で,ひずみ計上端部が地盤材 との付着切れを生じた可能性が高いと考えられる。

4.3 実験結果と考察

4.3.1 締付け力伝達状況の比較

図-16に,載荷荷重15.6kN時における,各ケースで の受圧板中央直下の鉛直応力σzと,アンカー周面要素の せん断応力τxzの深度分布を示す。また,鉛直応力の基 準値として,アンカー体への載荷は行わず,受圧板の締 付けのみを考慮した場合の解析値も示す。基準値の解析 は,アンカーおよび周面要素を地盤材に置換えて解析を

行ったものである。

解析結果より, σz が地盤内に伝達される大きさは, 基 準値よりもCase - 1 Aで高くCase - 2 Aで低い傾向が示 された。

Case - 1 Aでは,地盤材表面からGL - 22.2cmまでは σzが基準値より6~19%程度高い値で分布するが,それ 以深では徐々に応力値が高くなり,GL - 37.8cmでは基 準値より45%高い値となるピークが認められた。

アンカー周面要素のTxZの分布より,GL-45.0cm以深 にせん断応力が高く発現していることから,主としてGL -45.0cm以浅における周辺地盤には,アンカー体から 上向きの圧縮応力が伝達されたものと考えられ,この応 力の影響でGL-37.8cmをピークとしたσZの増加が生じ たものと考えられる。

このσzのピークよりも深部については,深度に伴う急激な応力低下が認められた。一方,この部分はアンカー 周面要素のτxzが高く発現している深度でもあることか ら,アンカー体の引上げに対する反力としての引張応力 が,τ₄を介して周辺地盤に伝達されている部分と考えら れる。したがって,このσzの低下は,地盤に発生した引 張応力と干渉したことによる応力の相殺が生じた影響と 考えられる。

Case - 2 Aについては、地盤材表面から深部に向かう σ_Z の低下量がCase - 1 Aよりも大きく、GL - 30.6cmで は基準値より約38%の低下が認められた。それ以深は、 基準値と同じ傾向の応力の深度分布を示すが、GL - 45.0 cmから再び急激な応力低下を示す傾向がみられた。

地盤材表面付近におけるσzの低下は,GL-8~10cm 付近に高いτxzが発現していることから,その周辺地盤

図ー14 地盤内鉛直応力経路(*τ_Fが*無い場合) Fig. 14 Vertical stress path of the ground (*τ_F* is ineffective)

にはアンカー緊張に伴い、TFを介した引張応力が作用していたものと推察され、応力の干渉が生じた影響により Case - 1 Aよりも大きくσzの低下が生じたものと考えられる。

また, GL-45.0cm以深でのσzの低下は, Case-1A と同様, τ₄を介し周辺地盤に発生した引張応力と干渉し た影響と考えられる。

以上の解析結果から、受圧板から地盤に伝達される鉛 直応力は、アンカーの周面摩擦抵抗を介して発生した地 盤の引張応力領域では、応力の干渉により低下する傾向 にあることが示された。すなわち、τ_Fやτ_Aにより周辺地 盤に引張応力が発生している地盤領域においては、受圧 板からのσzは効果的に伝達され難いことを意味する。

したがって,自由長部周面摩擦が発現するアンカーに ついては,すべり面などの地盤深部における締付け効果 が低減されるものと考えられる。

4.3.2 自由長部地盤の強度の影響

アンカーを対策工として用いる地すべり等の斜面では, 不安定層である自由長部地盤の方が,アンカー体設置地 盤と比較して軟質な場合がほとんどである。このため, 自由長部地盤の弾性係数Eおよび粘着力cを低減させた ケースについても数値実験を行い,自由長部地盤の強度

図ー15 地盤内鉛直応力経路 (τ_F がある有効) Fig. 15 Vertical stress path of the ground(τ_F is effective)

が与える影響について調べた。

解析モデルは、再現解析を行ったモデルを基本とし、 自由長部地盤のEを0.2倍および0.5倍に低減させたケー スについて、 τ_F がある場合と無い場合、それぞれについてFEM解析を行った。

なお,弾性領域であればEとcは比例関係にあると考 えられることから,ここではEに比例させてcの低減を 行っている。その他の材料定数および諸条件については, 再現解析モデルと同じとした。また,結果の比較は,載 荷荷重15.6kN時とした。

図-17に,解析結果による受圧板中央直下のσzの深度 分布を示す。また,アンカー体への載荷は行わず,受圧 板の締付けのみを考慮した場合の鉛直応力を基準値とし, 基準値に対するσzの増減割合の深度分布を図-18に示す。

図-17に示すσzの分布から、τFの有無に関わらず、自 由長部地盤の強度が高いケースほど、深部への応力伝達 度が高い傾向がみられた。

また,図-18に示すσ2の増減割合からは、τFが無い場 合は、GL-20cm付近でいずれのケースについても一旦 基準値の約20%増の値となった後、深部に向かい応力値 が増大する傾向が認められた。深部でのσ2の増大は、ア ンカー体からτAを介し伝達される上向きの応力の影響と 考えられることから、地盤内部で下向きに作用する締付 け力としては、いずれのケースでも基準値より20%程度 高いものと推察される。

一方, *τ*_Fがある場合は, 深部に向かいσzの低下量が大きい傾向が認められた。特に, 地盤強度が低い場合ほどその傾向が著しいことがわかる。

σzの増減割合からも、地盤強度が低いケースほど応力 の低下割合が著しく、Eを0.2倍としたケースの地盤境 界部では、σzが基準値から53%低下していることがわかる。

これらの数値実験の結果から、*tr*が無い場合について は、自由長部地盤の強度に関わらず、地盤深部への締付 け力の伝達状況には大きな差が無いことが示された。

一方でがある場合,自由長部地盤の強度が低いほど, 締付け力の低下量が深部ほど大きい傾向にあることが示 された。

なお,これらの影響は、アンカーを平面ひずみ問題と して扱ったため、周面摩擦の有無の影響が大きく表れた 可能性が高く、今後3次元モデルを用いた解析結果との 比較検討が必要と考える。

5. まとめ

本研究では,アンカーの実大実験,模型実験および数 値実験を行い,受圧板からの締付け力に対する,自由長 部周面摩擦抵抗τ_Fの影響を調べた。その結果,以下の知 見が得られた。

- 実大実験および模型実験における地盤内のひずみ および応力分布より、でFが無い場合のアンカーの 方が、受圧板から地盤へ伝達される締付け力が相 対的に高いことが示された。
- ②. また、模型実験におけるグラウトの圧縮応力の分 布状況から、てょがある場合、アンカー全体の周面

図ー18 新自応分増減割合の床及方布(何里・15.6kN) Fig. 18 Depth distribution of vertical stress increase and decrease ratio (Load: 15.6kN)

摩擦抵抗に対するでFの負担割合が比較的高いこと がわかった。今回行った模型実験結果においては、 でFの摩擦負担割合は約3割~5割と高く,決して 無視できない大きさであることが示された。

- ③. FEMによる数値実験結果において、地盤内鉛直応力およびアンカー周面要素のせん断応力の深度分布傾向から、アンカーの周面摩擦抵抗を介して地盤内に発生する引張応力が、受圧板からの締付け力を低減させる可能性が示された。
- ④. また、*τ_F*がある場合、自由長部地盤の強度が低い ほど、深部への締付け力の伝達割合が低くなる傾

向が示された。

⑤. 上記①~④の結果から、TFの存在が受圧板からの 締付け力の伝達を阻害する要因となる可能性が示 された。特に、地すべりなどの比較的軟質な地盤 におけるアンカーにおいては、締付け力の伝達割 合が大きく低減されるものと思われる。

以上のことから、*τ*_Fが作用することにより、従来考え られていたよりもアンカーの締付け効果が低く見込まれ るものと考えられる。今後は、さらに実地盤実験や、3次 元モデルを用いた模型実験および数値実験などを重ねる ことで、自由長部の長さやその地盤条件に応じた締付け 力の低減量を定量化する手法を検討し、アンカーの設計 に反映させる必要があると考える。また、これに加え、 *τ*_Fが発生しないよう、アンカー自由長部の構造を見直す 必要性もあるものと考える。

引用文献

- 1) (紺地盤工学会 (2000): グラウンドアンカー設計・施工基準, 同解説 (JGS4101-2000), pp.143-144, 154-155.
- 2) 土井茂樹・黒坂誠・筒井道剛・吉田直弘(1992):永久地盤アンカー工法の研究(その20.アンカー定着部付近の掘削とアンカー耐力との関係),日本建築学会大会学術講演梗概集(北陸), pp.1351-1352.
- 3) 佐藤守・宮崎祐助・境野典夫・滝口健一・吉田直弘・長谷川 昌弘 (1992):永久地盤アンカー工法の研究(その21. 応力伝

達機構),日本建築学会大会学術講演梗概集(北陸),pp.1353-1354.

- 4) 桑島正樹・西川純一・日下部祐基(1995):アンカー引抜き時の周面摩擦抵抗に関する模型実験,開発土木研究所月報, No.501, pp.2-10.
- 5)山上拓男・山川治(1990):斜面安定工におけるアンカーカの 新しい算定法,土と基礎, Vol. 38, No. 5, pp. 51-56.
- 6) 蔡飛・鵜飼恵三(2003):アンカー工による斜面の補強効果-極限平衡法と弾塑性FEMとの比較,日本地すべり学会誌, Vol. 40, No. 4, pp. 8-14.
- 7)田中尚・石井靖雄・藤澤和範・森下淳 (2006):模型実験の再現によるアンカー工弾塑性3次元FEM解析モデルの検討,土 木技術資料, Vol. 48, No. 4, pp. 64-69.
- 8) 石田孝司・藤澤和範・田中尚・倉岡千郎・太田敬一(2008): 遠心載荷模型実験のFEM再現解析によるグラウンドアンカー 工の締付け効果の検討,第47回日本地すべり学会研究発表会 講演集,pp.233-236.
- 9) 瀬崎茂・小瀧辰人・峯谷正・浜野浩幹(2005):アンカー形式 による支持機構と支持力の違い,第44回日本地すべり学会研 究発表会講演集, pp.271-274.
- 10) 林鍾鉄・龍岡文夫・宮崎啓一(1990):砂地盤内の剛な鉛直ア ンカーの引抜き抵抗メカニズム,土と基礎, Vol.38, No.5, pp.33-38.
- 片山直樹 (2009):アンカー体摩擦応力に対するグラウト加圧 注入の効果、日本地すべり学会誌、Vol.45、No.5、pp.26-32.
- 12)若井明彦・鵜飼恵三(1995):単杭の水平載荷挙動に関する模型実験と解析,土木学会論文集,No.517,Ⅲ-31,pp.159-168.
- 13) (社)地盤工学会(2003): 弾塑性有限要素法をつかう,51p.
 (原稿受付2009年12月7日,原稿受理2010年6月7日)