■ 技術報告 Technical report

■中新統の岩盤地すべりにおけるすべり面構造の評価事例 -島根半島地合地すべりの例-

Slip surface estimation of rock-slide on Miocene bedrock : A case study of the Chigou landslide in Shimane Peninsula

片山直樹* Naoki KATAYAMA/㈱日本海技術コンサルタンツ Nihonkai Technical Consultants Co., Ltd.

キーワード:岩盤地すべり, せん断帯, X線回折分析, pH・EC測定, 針貫入試験 Key words:Rock-slide, Shear band, X-ray diffraction analysis, pH・EC measurement, Needle penetration test

1. はじめに

地すべりの安定解析や対策工の検討を行うためには, 地すべり移動土塊の滑動が生じている深度,すなわち「す べり面」を把握する必要がある。一般的な地すべり調査 では,①ボーリングコアの判定,②すべり面計測調査(パ イプひずみ計,孔内傾斜計,多層移動量計など)の両調 査結果からすべり面を総合的に判定する場合が多い¹⁾。

しかし,滑動を停止している地すべりなどでは,上記 ②すべり面計測調査で有意なデータを得ることができず, ①ボーリングコアの判定のみですべり面を判定せざるを 得ない場合もある。このとき,ボーリングコアにすべり 面と思われるせん断帯が複数認められた場合には,いず れの箇所がすべり面であるかを判断することは難しい。

従来,すべり面にみられる粘土や破砕帯のコア採取は 困難であったが,近年のボーリング削孔技術やツールス 性能の向上により高品質なコア採取が可能となった。こ のため,目視観察によるせん断帯やすべり面の判定精度 は向上しつつある。脇坂他(2012)では,高品質ボーリ ングコアの詳細な観察に基づく破砕度区分により,テク トニックな断層岩類とノンテクトニックな地すべり起源 の破砕岩とを区別しており²,すべり面判定への活用が 今後期待できる。

だが、ボーリングコアの判定はコア観察者の主観が入 る余地が大きく客観性に欠ける面があることを考慮する と、すべり面判定の精度向上のためにはコア観察に加え、 何らかの客観的評価指標が必要と考える。しかしながら、 現状では上記した方法以外ですべり面を決定するための 評価手法は一般化されていない。

これまで、すべり面の評価指標を得る試みが多くなされている。浜崎ら(1992ほか)は、地すべり移動土塊は 相対的に空隙が多く酸化傾向にあることに着目し、ボー リングコアのpH測定結果をすべり面判定に利用できる 可能性を示した^{3),4),5),6)}。また木村ら(2006)は、ボーリ ングコアのpHに加え電気伝導率(EC)もすべり面評価 指標として利用し、その有効性を認めている⁷⁾。

吉村ら(2005)は、断層や変質帯の調査手法であるγ

線測定と帯磁率測定を地すべりのボーリングコア等に対 して行い,地すべりに起因した異常値がすべり面に表れ る可能性を示している⁸⁰。

このように,物理化学的なアプローチからすべり面判 定の評価指標を得る研究が多くなされているが,現時点 でオーソライズされた方法はなく,いずれも研究途上と いえる。しかしながら,いずれの研究結果においてもす べり面判定に利用することの有効性が示されていること から,これらを組み合わせることによって,すべり面判 定の精度向上に寄与できるものと考える。

以上を背景とし、本文では、島根半島の地合地区に存 在する現在停止中である中新統堆積岩の岩盤地すべりに ついて、ボーリングコアで確認されたせん断帯の構造的 特徴を紹介する。また、これらのせん断帯では粘土の挟 在が認められたため、粉末X線回折分析により粘土鉱物 の同定を行い、同定された鉱物について母岩と粘土での 相対含有量の比較結果を示す。さらに、すべり面判定に 際し比較的簡便に行える試験方法であるpHおよびEC測 定をボーリングコアに対して実施し、それに加えて針貫 入試験値や層理面傾斜角の変化も利用し、総合的にすべ り面の判定を行った結果について述べる。

2. 対象地すべりの概要

2.1 地すべりブロック範囲と活動状況

地合地すべりは大きく4つのブロックに区分され、本 文で示す調査対象ブロックは、北西方向に開いた凹地の 緩斜面に形成された集落を含むS-2ブロックである。S-2ブロックの平面規模は斜長L360m,幅W160m程度であ り、移動層厚は最大50m程度であると想定されている。

地合地すべりでは、全体的な地すべり活動状況を把握 するため、平成9年から地表面変位のGPS観測を25箇所 で行っており、斜面下方向に年平均5~21mmの変位が 認められている。しかし、近年ではいずれのブロックに おいても変位量が低下傾向にあり、とくにS-2ブロック でその傾向が顕著に認められる。孔内傾斜計観測におい ても、近年S-2ブロックでは有意な変位が認められず、 地すべりが停止した状態にあるものと推察される。

連絡著者/corresponding author 〒699-0403 島根県松江市宍道町西来待2570-1

^{2570-1,} Nishikimachi, Shinji-cho, Matsue-City, Shimane Pref, 699-0403, Japan

図-1 地すべり防止区域全体平面図

図ー2 S-2ブロック主測線断面図 (※表-3総合評価の"A"および"B"のすべり面を表示している)

2.2 地形地質

地合地すべりは,島根半島中央部の日本海に面した北 向き斜面に位置する。島根半島は,その南部に位置する 宍道低地帯とともに新第三系の複背斜・複向斜や,これ ら褶曲の延びと同方向に走る断層により複雑な地質構造 をなしており,地形にも影響を与えている⁹。

地すべりブロックが分布する斜面は、全体的に弱い谷 型斜面をなす。斜面の断面形状は、標高0~60m付近ま での海岸に面した斜面では斜度30~45°と急傾斜をなし ている。これまで、この海岸斜面では斜面崩壊を頻発し ており、グラウンドアンカー工や吹付枠工、えん堤工な どによる崩壊対策が講じられている。この海岸斜面より 上部には緩斜面が広がり、集落や耕作地として利用され ている。集落より上部斜面は、標高約200mの斜面頂部 まで斜度40°前後の急斜面を形成する。

地合地すべり周辺の基盤地質は新第三系の古浦層が分

布し成相寺層がこれを不整合に覆う。また、これらを貫 く塩基性 – 中性貫入岩が点在する。古浦層は一般に非海 成層であると考えられており、当該地では主に砂岩泥質 岩の互層として分布するが、一部で安山岩火山角礫岩や 酸性凝灰岩を挟む。成相寺層は、黒色泥岩およびそれと 指交する流紋岩質火山岩類からなる海成層で、当該地で は山頂部付近に流紋岩溶岩ないし火砕岩として分布する。

今回対象とするS-2ブロックの地質構成は、地表から 20m程度までを旧地すべり移動層と思われる崩積土が被 覆し、その下位に古浦層の砂岩・泥質岩互層が分布する。 S-2ブロックの左側部付近にはドレライトがシート状に 貫入し、この地質境界がブロック側部の規制要因と推察 される。また、右側部については安山岩質火砕岩層が西 に向かい急激に落ち込む状況が既往ボーリング結果から 確認できており、付近にN-S方向の断層が存在する可 能性がある。

3. せん断帯の構造的特徴

3.1 せん断帯の確認

H26年度に実施した3孔のボーリング (BV 2-1, BV 2-2, BV 2-3)において、古浦層の砂岩あるいは泥質 岩に、せん断の影響を受けたと考えられる構造(せん断 帯)を示すコアが認められた。せん断帯の構造は地すべ りの影響である可能性が高いため詳細な観察を行った。 その結果から抽出したせん断帯確認深度を表-1にまと める。

併せて,各せん断帯における①粘土の有無,②鏡肌面 の有無、③含有礫の円磨度、④異種地質の礫取り込みの 有無についても表-1に示す。これらは、地すべりのす べり面粘土にみられる特徴である。とくに③含有礫の円 磨度については、岩盤のせん断過程において、大変位が 生じた箇所では岩片の細片化~円礫化が生じるものと考 えられることからせん断の履歴判断の参考となる¹⁰⁾。礫 の円磨度は、該当層全体の平均と考えられる円磨度を円 磨度印象図¹¹⁾に当てはめ評価した。また、せん断帯の一 部には異種地質の礫が取り込まれていることも観察され, これはせん断過程で取り込まれたことを示す可能性もあ

No.	せん断帯 確認深度 地				せん断帯の評価項		
		地 質	土 質	①粘土	③倖叩五	3礫の	
	(GL-m)				②覡肌囬	円磨度	
1	28. 6 ~ 28. 9	泥質岩	礫混じり粘土	0	-	0.3	
2	35. 5 ~ 36. 0	泥質岩	礫混じり粘土	0	0	0.7	
3	44.9付近	泥質岩	礫混じり粘土	0	0	0.6	
4	54. 8~54. 9	泥質岩	礫混じり粘土	0	-	0.5	

礫混じり粘土

礫質粘土

礫質粘土

礫混じり粘土

礫混じり粘土

礫混じり粘土

0

0

0

0

0

0

0

Ο

0

0

0

0

表-1 せん断帯確認深度一覧

④異種地

質の礫

_

0

0

0

0

0.2

0.2

0.2

0.5

0.4

0.5

0.5

0.4

泥質岩

泥質岩

泥質岩

泥質岩

① 20.8~28.9 | 泥質岩~砂岩 | 礫混じり粘土

泥質岩

孔

No 番

5 59. 6~59. 9

6 60 1~60 7

⑦ 61.4 付近

① 32.35 付近

2 41. 4~45. 3

A 2 44.0~54.25 泥質岩~砂岩

ることから評価項目とした。

3.2 せん断帯の構造

ボーリングコアに認められたせん断帯の構造は、大き く分けて(1)異種地質の礫・岩片が混ざる粘土,(2)泥質 岩の礫混じり粘土であった。これらの代表的な性状は次 のとおりである。

(1) 異種地質の礫・岩片が混ざる粘土

ボーリングコアの外観は、淡緑色の泥質岩や黒色頁岩、 緑灰色の砂岩の礫・岩片が不規則に混在し,これらの間 を砂質粘土が充填する層相として観察された(写真-1 ~2)。礫や岩片の大きさ、粒度分布に規則性は認めら れない。全体的な傾向として、大きい岩片は角礫として 取り込まれるが、小径の礫ほど丸みを帯び円磨度が高い。 このようなせん断帯が厚い箇所では6m程度確認された。 (2) 泥質岩の礫混じり粘土

泥質岩の一部が細片化~粘土化し、細礫から中礫サイ ズの泥質岩が含まれる層相である。粘土の層厚は2 cm から最大で60cmであった。粘土化部分から漸移する上 下の泥質岩には割れ目が多く発達しており、せん断の影 響を受けたダメージゾーンである可能性が指摘される。 粘土に含まれる礫は、全体的に円磨度が0.4~0.7と高く、 前述した(1)異種地質の礫・岩片が混ざる粘土と同様, 礫径が小さいほど円磨度が高い傾向が認められた。一部 の粘土には鏡肌面が認められたが、擦痕は明瞭ではない (写真-3~5)。また、一部では粘土化の程度が低く泥 質岩が破砕している様相のコアも観察された(写真-6)。 砕片化した礫の回転や移動が確認でき、せん断に伴った ものと考えられるが、粘土化の程度が弱いことから、せ ん断変位量としては少ない箇所であると推察される。

BV2-2;44.05~44.15m区間のコア状況 写真-1

写真-2 BV2-3;24.4~24.5m区間のコア状況

写真-3 BV2-1;44.85~45.0m区間のコア状況

③ 47.4~52.7 泥質岩~砂岩 礫混じり粘土 (凡例) O:認められる, -:認められない

写真-4 BV2-1;44.9m付近の拡大

写真-5 BV2-1;44.9m付近の鏡肌面

写真-6 BV2-1;28.6~28.7m区間のコア状況

4. 粘土鉱物の同定と相対含有量の比較

4.1 せん断帯における粘土鉱物の濃集の可能性

眞弓(2004)によると,残留強度へ向うせん断面の形 成過程では,構成粒子の再配列(定向配列)に加え,せ ん断面の細粒分含有率が増大することを確認しており, スメクタイトを含む場合,せん断面にスメクタイトが濃 集し被覆層が形成される可能性を示している¹²⁾。このこ とから、せん断過程を経た粘土であった場合、その母岩 と比して含まれる粘土鉱物の含有量が増大する傾向にあ るものと解釈できる。それとは異なり、岩盤の風化過程 により生じた粘土であった場合には、風化や変質により 粘土鉱物が生成されない限りにおいては、粘土鉱物の含 有量は母岩と同程度であると考えられる。よって、当該 地すべりのボーリングコアに認められたせん断帯の粘土 と母岩に対してX線回折分析を行い、粘土鉱物の同定、 および、両者の粘土鉱物の相対含有量を比較した。

4.2 X線回折分析の方法(XRD)

ボーリングコア観察からせん断帯と評価した箇所の粘 土とその母岩(含まれる岩片)について粉末X線回折分 析を実施した。

ボーリングコアから採取した粘土または岩石試料を常 温25℃で乾燥後,メノウ乳鉢で丁寧にすりつぶして粉末 試料を調整した。粉末試料をスライドガラス上に適量分 取し,精製水を滴下し撹拌してから数時間静置し定方位 試料を作成した。一部の定方位試料については,エチレ ングリコールを噴霧して測定し,スメクタイトの有無を 確認したが,いずれの試料においてもスメクタイトの存 在は確認できなかった。

粘土鉱物の相対含有量は、いずれの試料でも顕著な ピークを示した石英(3.34Å)を指標鉱物とし、その回 折線強度を基準に比較して判定を行った。

4.3 粘土鉱物の同定と量比判定の結果

表-1に示したせん断帯において、それぞれで粘土と 母岩のX線回折分析を行った結果、粘土鉱物としてはい ずれも緑泥石(Chlorite)が卓越して含まれていること が認められた。

粘土鉱物の量比判定は,石英3.34Åの回折ピークを100 cpsとした相対強度を用いた。着目する回折ピークは緑 泥石に特徴的なピーク(14Å,7Å,4.7Å)とし,粘土と 母岩の相対強度を比較することで粘土鉱物の含有量の増 大の有無を推定した。すなわち,粘土側の回折ピークが 高ければ,母岩よりも粘土側に緑泥石が多く含まれてい るものと判断され,せん断過程を経て粘土鉱物が濃集し た可能性が考えられる。なお,緑泥石は常温常圧下では 生成されず通常の風化過程では含有量は増加しない¹³。

孔来	No.	せん断帯	使用したサンプルの状態		緑泥石に特有のピーク			比較結果 ^{※2}	
		確認深度			相対強度(cps) ^{※1}				
Ħ		(GL-m)	種別備考		14Å	7Å	4.7Å	(11-111)	
BV2-1	1	28. 6 ~ 28. 9	粘土		21	62	46	•	
			母岩		12	29	30	(R=1.5~2.1)	
	2	35. 5 ~ 36. 0	粘土	鏡肌面粘土	27	75	67		
			母岩		16	39	31	(R=1.7~2.2)	
	3	44.9付近	粘土	鏡肌面粘土	22	54	56	A	
			母岩		6	19	17	(R=2.8~3.3)	
	4	54. 8~54. 9	粘土		8	23	18		
			母岩		11	33	25	✔ (R=0.7)	
	5	59.6~59.9	粘土		27	73	51	•	
			母岩		12	35	23	↑ (R=2.1~2.3)	
	6	60. 1~60. 7	粘土	鏡肌面粘土	17	61	41	•	
			母岩		4	18	14	↑ (R=2.9~4.3)	
	Ī	61.4付近	粘土		20	58	44	•	
			母岩		7	24	20	↑ (R=2. 2~2. 9)	
_	1	32.35 付近	粘土	褐色粘土	9	16	36	•	
4			母岩		3	10	13	↑ (R=1.6~3.0)	
BV2	2	44.0~54.25 (54.2m 付近)	粘土	白色粘土	6	17	17		
			母岩		7	17	16	- (R=0.9~1.1)	
BV2-3	1	20.8~28.9	粘土		12	20	50	•	
		(23.2m 付近)	母岩		12	21	34	个 (R=1.0~1.5)	
	2	41, 4~45, 3	粘土	鏡肌面粘土	18	47	50	•	
		(43.8m付近)	母岩		2	8	10	(R=5.0∼9.0)	
	3	47.4~52.7	粘土	鏡肌面粘土	18	48	55	•	
		(52.5m 付近)	母岩		4	9	12	↑ (R=4.5~5.3)	
<u>×1</u>	F	苗3.34Åの⊦		100ms とした場合の相	动命度				

表一2 X線回折分析結果

※2 个:R高(=粘土の緑泥石が増加)、↓:R低(=粘土の緑泥石に増加なし)、-:変化なし

このため、緑泥石含有量の増加は、せん断過程における 構成粒子再配列に伴った粘土鉱物の濃集によるものであ る可能性が高いと判断できる。

各せん断帯における緑泥石の量比判定結果を表-2に 示す。一部のサンプルを除き,全体的に粘土側で緑泥石 に特有の回折ピーク強度が高い結果が得られた。このよ うな結果を示した粘土については、緑泥石の含有量が増 加しているものと判断され、せん断の影響を受けた可能 性が指摘される。

5. pHおよびEC

5.1 測定目的

一般に岩石のpH(水素イオン指数)は、地表近くで は酸化の影響を受け酸性側に傾くなど、風化・変質の進 行によって変化する。地すべり地においては、移動土塊 は不動層に比べ空隙が多く、地下水流動等の影響を受け 風化や酸化が促進され、pHが酸性へと変化していく。 一方、すべり面以深の不動層においては相対的に風化促 進の程度が小さい。このため、すべり面を境としてpH に変化が表れることが様々な研究論文で示されている。

一方, EC (電気伝導率) については, 水口ほか (2002) などの既往研究によりすべり面や破砕帯で値の変化がみ られることが示されている¹⁴⁾。

以上の傾向が認められていることから, pHおよびEC はすべり 面深度を決める客観的な指標になると考え、 測 定を実施した。

5.2 測定方法

pHおよびECの測定では粘土もしくは岩石粉末の懸濁 液を用い、試験方法は地盤工学会基準(JGS0211-2010)

に準じた。懸濁液は、蒸留水100ccに粉末試料20gを加 え十分に攪拌した後,3分間静置後のものとした。測定器 は東亜ディーケーケー社製のポータブル電気伝導率・ pH計「WM-32EP」を使用した。

5.3 測定結果

測定結果を図-4に示す。BV 2-1での測定結果から、 当該箇所における古浦層の砂岩泥質岩は新鮮部でpH10 程度をとるものと考えられ、これを基準として各孔での pH測定結果を評価した。なお、ECについては一意の傾 向性が認められなかったが、参考として図-4にEC= 1,000~20,000mS/m程度の比較的高い値を示した深度 をプロットする。

いずれの孔においても表層部に分布する崩積土は, pH 7~9程度とやや酸性側に傾いた値となり、表層部ほど 酸化の度合いが強い傾向が認められた。一方、その下位 に分布する古浦層の砂岩泥質岩互層では、孔毎に異なる 傾向が認められた。

BV 2-1 においては、古浦層全体にpH 9~10程度と 酸化の影響をあまり受けていない状況と推察される。GL -68m~82m付近はpH8~9とやや酸性側となるが.当 該区間はボーリングコアで方解石脈が卓越して認められ る箇所に該当しており、熱水変質の影響によるものと考 えられる。ただし、pHが酸性側に傾いた詳細なメカニ ズムについては明らかでない。

BV 2-2 では上位からGL-50m付近までpH 8 前後とや や酸化の影響を受けていると判断され、それ以深はpH 9.5程度と明瞭な変化を認める。ボーリングコアの状態 でもGL-50.9m以浅が褐色を帯びており、目視観察結果 と調和する。

BV 2-3 は上位からGL-33m付近まではpH 7~8 程度 と酸化傾向にある。それ以深はGL-51m付近までの間で pH9.5程度に向かい徐々にアルカリ性側に傾く特徴がみ られる。ボーリングコアではGL-52.5mまでせん断帯が 観察されており、その結果がpHにも表れていると評価

J. of the Jpn. Landslide Soc., Vol.53, No.4 138 (2016)

される。ただし、GL-33m付近でpHが上昇トレンドに移 行するが、その変化点についてはコアの外観上大きな変 化は認められず、pH測定により、より酸化の影響を被っ た範囲を抽出できたものと考えられる。

6. 針貫入試験

6.1 試験目的

当該地すべりは岩盤地すべりであり,地すべりの影響 で岩盤には亀裂が生じ風化が促進され,岩盤自体の強度 が低下する傾向にある。このため,地すべり移動層と不 動層との間には岩盤強度の差異が表れる可能性がある。

よって,簡易的に岩石や土の強度を測定することがで きる針貫入試験をボーリングコアに対して行い,すべり 面評価指標の一つとした。

6.2 試験方法

本調査では、ボーリングコア全長に対し、10cm毎に1 箇所の針貫入試験を実施した。試料に試験器の先端(押 圧子及び貫入針の先端)を直角に押し当て、針の貫入量 が10mmに達したときの貫入力を記録した。貫入量が10 mmに達する前に貫入力が100(N)に達した場合は、その 時点での貫入量を記録した。得られた貫入量と貫入力の 関係から針貫入勾配NPを求め、(1)式¹⁵により一軸圧縮 強さ(qu値)への換算を行った。なお、(1)式は単位系を MKSからSIに変更するに際し修正を加えている。

y:一軸圧縮強さの対数値(kN/m²)

x:針貫入勾配(NP=貫入力(N)/貫入量(mm))の対数値 6.3 試験結果

泥質岩は全体的にコアが脆く,風化により粘土化する 部分も散見されたが,対照的に砂岩は状態が良好で硬質 な部分が多く認められた。このため,地質の違いによる

コントラストが大きく一律の評価が困難であったことか ら,泥質岩の試験結果は除外し,状態が良好で安定して いる砂岩についての試験結果を風化範囲判断のための指 標とした。また,針貫入試験値は測定箇所により値が大 幅に変化しがちであり,1箇所のデータのみから風化程度 を判断することは不適当である。このため,砂岩単層毎 に針貫入試験値から換算した一軸圧縮強さの平均値を求 め,相対的な強度の比較から風化範囲の判断を行った。

その結果,各孔深部側の砂岩層に強さが相対的に低い 部分が認められ,BV2-1ではGL-25.4~28.6m,45.9~ 48.8m,61.7~64.45mの各区間,BV2-2ではGL-32.6~ 45.8m区間,BV2-3ではGL-30.6~41.2m,48.7~50.65 mの各区間における砂岩層に相対的な強度低下を認める ことができた。強度が上位から漸減する傾向にはないこ とから,風化の影響ではなく地すべりのせん断に伴うダ メージゾーンである可能性が指摘される。

7. 層理面傾斜角

7.1 計測目的

層理面の走向・傾斜は,平面的あるいは断面的にある 程度狭い範囲内の地層であれば,概ね同じ走向・傾斜を 示す傾向にあるものと考えられる。今回対象としている 地すべりブロックは,平面的には斜長L360m,幅W160 m程度であり,断面的には最大移動層厚50m程度と想定 されており,地層(古浦層)が形成された当時の堆積環 境を考えると,十分狭い範囲といえる。したがって,当 該地すべりブロック範囲周辺の砂岩泥質岩互層の走向傾 斜は概ね同じであると仮定できる。

しかし,同一地層内で層理面の走向・傾斜が大きく異 なる変換点が存在する場合は,褶曲・断層などの構造運 動や地すべりなどの外的な作用により,層理面に変化が 生じたと考えることができる。

この考えから,ボーリングコアにみられる層理面の最 大傾斜角を計測し,その変化の傾向から地すべりの影響 の有無を判断することを試みた。

7.2 計測方法

本調査で採取したボーリングコア3孔分について,層 理面の傾斜(最大傾斜角)を計測した。ただし,コアの みでは層理面の走向を知ることはできないため,層理面 の最大傾斜角のみを比較対象としている。

7.3 計測結果

各ボーリングコアで確認されたせん断帯の最下位のも のより深部のコアは地すべりの影響を受けていないもの と考えられる。その層理面最大傾斜角の平均値は,

BV 2-1 で41°(GL-61.4m~85m間の平均値;母数n=68) BV 2-3 で44°(GL-52.7m~62m間の平均値;母数n=11) であった。

一方,最下位のせん断帯より上位の層理面最大傾斜角 は平均で,

BV 2-1 は35°(GL-25.4m~61.4m間の平均値;母数n=40)

凶 0 宿坯间隙称为可腐朽不能加凶

BV 2-3 は32°(GL-9.4m~52.7m間の平均値;母数n=59) となり、いずれもせん断帯以深の最大傾斜角より小さい 傾向が認められた。

これらの結果から,各孔ともせん断帯のいずれかで滑 動が生じ,層理面の傾斜角が変化した可能性を示してい ると考えられる。なお,BV2-2については,層理面が 全体的に不明瞭でありせん断帯より下位のデータを得る ことができなかったため評価対象外とした。

8. すべり面の評価

以上の結果を表-3に総括する。各評価項目およびX 線回折分析などの補足調査結果に多く該当したせん断帯 が,より活動的なすべり面を含む可能性が高いものと考 えられる。なお,評価項目③礫の円磨度と④異種地質の 礫の混入有無については,せん断の影響を被ったもので ある可能性が高いため,総合評価に際し重きを置いてい る。今回の評価結果の精度が示されるのは,ある程度地 すべりの変位が生じることを待つこととなるが,客観的 に活動的なすべり面であることを検討するための一つの アプローチと考える。

謝辞

本調査の実施にあたり, 島根大学大学院総合理工学研 究科の汪発武教授ならびに三瓶良和教授には, 地すべり 調査および評価に関し全般的なご助言を頂いた。同大学 院大平寛人准教授には, X線回折分析に関しご指導およ びアドバイスを頂いた。また, 横田修一郎島根大学名誉 教授には, 現地踏査に同行して頂き, 地質構造や地すべ りの内部構造に関する貴重なご意見を頂戴した。島根県 出雲県土整備事務所には,本現場のデータ公表にご理解 とご協力を頂いた。ここに記して謝意を表します。

表-3 すべり面調査結果総括表

孔番	No.	せん断帯	せん断帯の評価項目				補足調査結果				\$
		確認深度 (GL-m)	①粘土	②鏡肌面	③礫の 円磨度	④異種地 質の礫	XRD	pH EC	針貫入 試験	層理面 傾斜角	評価
BV2-1	1	28. 6 ~ 28. 9	0	-	0.3	-	0	有意性認められず	0	0	С
	2	35. 5 ~ 36. 0	0	0	0.7	-	0		Δ		В
	3	44.9付近	0	0	0.6	-	0		0		Α
	4	54. 8 ~ 54. 9	0	-	0.5	-	-		0		С
	5	59. 6 ~ 59. 9	0	-	0. 2	-	0		0		С
	6	60.1~60.7	0	0	0. 2	-	0		0		С
	1	61.4付近	0	-	0. 2	-	0		0		С
BV2-2	1	32.35 付近	0	0	0.5	-	0	0	-	-	в
	2	44. 0~ 54. 25	0	-	0. 4	0	-	0	Δ		А
BV2-3	1	20. 8~28. 9	0	-	0.5	0	0	0	-		В
	2	41. 4~45. 3	0	0	0.5	0	0	0	0	0	Α
	3	47.4~52.7	Ö	Ó	0.4	Ó	0	0	0		В

(凡例)

<u>せん断帯の評価項目および補足調査結果</u>

○: すべり面との関連性あり、△:やや関連する、-:関連性なし

総合評価 A:活動的なすべり面を含む可能性が最も高い、B:やや高い、C:低い

引用文献

- 1)(社)日本道路協会(2009):道路土工-切土工・斜面安定工指 針,pp.389-392.
- 2) 脇坂安彦・上妻睦男・綿谷博之・豊口佳之(2012):地すべり 移動体を特徴づける破砕岩-四万十帯の地すべりを例として -,応用地質,第52巻,第6号,pp.231-247.
- 浜崎晃・子川桂二 (1992): pH測定によるすべり面判定の試み,平成4年度第31回日本地すべり学会研究発表会講演集, pp.183-186.
- 4)浜崎晃・子川桂二(1993):pH測定によるすべり面判定の試み(その2),平成5年度第32回日本地すべり学会研究発表会 講演集,pp.287-290.
- 5) 浜崎晃・子川桂二 (1994): pH測定によるすべり面判定 (その3), 平成6年度第33回日本地すべり学会研究発表会講演集, pp.141-144.
- 6)浜崎晃(1995): すべり面判定におけるpH測定の有効性,平成7年度第34回日本地すべり学会研究発表会講演集,pp.211-214.
- 7)木村一成・水口公徳(2006):化学的手法を用いたすべり面判定事例,平成15年度技術研究発表会講演集,(公社)地盤工学会四国支部,pp.1-2
- 8) 吉村辰朗・間野道子 (2005):ボーリングコアのγ線強度・帯 磁率測定によるすべり面検出,日本地すべり学会誌, Vol. 42, No. 3, pp. 216-222.
- 9) 鹿野和彦・中野俊(1986): 恵曇地域の地質,地域地質研究報告,地質調査所, pp.2-17.
- 10) (独) 土木研究所他 (2013): すべり層のサンプリングと認定方 法に関する研究, 共同研究報告書, 第449号, pp.6-8.
- Krambein, W. C. (1941) : Measurement and geologic significance of shape and roundness of sedimentary particles, Jour. Sed. Petrol., 11, pp. 64 – 72.
- 12) 眞弓孝之(2004): すべり面せん断試験機の開発とその適用に よるすべり面せん断抵抗角の評価,学位論文, pp.103-107.
- 13) 吉村尚久 (2001):粘土鉱物と変質作用,地学双書32,地学団 体研究会, pp. 156-172.
- 水口公徳・矢田部龍一・横田公忠(2002):懸濁液のpH,Eh及 びCDによるすべり面の推定,第37回地盤工学研究発表会講演 集,pp.2221-2222.
- 15) 岡田滋・泉谷泰志・飯塚友之助・堀内澄夫(1985):針貫入試 験による軟弱な地山強度の推定,土と基礎,pp.35-38. (原稿受付2015年11月24日,原稿受理2016年4月13日)